

Secrets of Successful Source Emission Test Programs November 4, 2021

A professional community where you can get the solutions you need to make an impact

Benchmark

Benchmark your programs via events, online learning, research and executive networks

Learn

Learn tools & techniques to execute your strategy and be inspired by peers

Build

Build a network of peers whose experience can help you solve your challenges

Delivering Knowledge & Professional Wisdom

Peer Forums

Research Insights

Targeted Networking

Actionable strategies to empower EHS&S leaders to make an impact

NAEM Connects EHS & Sustainability Leaders

Meet Our Speaker

David Ostaszewski
Northeast Regional Manager
Stack Testing

STACK TESTING 101

David Ostaszewski, P.E.

Regional Manager Northeast USA Region David.Ostaszewski@stacktest.com

Agenda

- Source emission testing overview
- General source testing goals and objectives
- Source emission testing category review
 - Volumetric flow rate measurements
 - Isokinetic test methods
 - Gaseous compound
 - Instrumental real-time testing
- Key source test program elements
- Common source testing program pitfalls

Source Emission Testing can be best defined as:

"Quantifying pollutant emissions from a stationary air emission point source"

- Point sources can range from a 2-inch ID process vent to a 20 foot or larger diameter utility boiler stack.
- Some of the pollutants commonly tested include:
 - particulates (filterable, condensible, PM-10, PM-2.5)
 - volatile organic compounds (VOCs)
 - acid gases (HCI, HF, HNO3, H2SO4)
 - SOx, NOx, CO, THC, NH3
 - semivolatile compounds
 - aldehydes and ketones
 - toxic metals

Why Test?

- To evaluate or demonstrate compliance with a State or Federal emission standard
- 2. To audit a continuous emission monitoring device
- 3. To evaluate the emission impacts of a process modification
- To generate data in support an emissions inventory or permitting activity, or
- 5. To evaluate the performance of a pollution control device

Source emission testing can:

➤ Accurately quantify target pollutant emissions providing quality data for compliance and engineering projects.

Source emission testing can't necessarily:

➤ Identify all unknown pollutants in a gas stream. Need to have some information on process parameters, raw materials, exhaust gas constituents, etc. to select appropriate test methods.

Typical Source Testing Program

- Scope of work and pollutant target list are developed (preliminary testing)
- Testing protocol is submitted (if required by client or regulatory agency)
- > Field testing conducted
- Data reduction performed
- > Test report prepared
- Compliance demonstrated

Sample Journey

- Collection
- Initiation of Chain of Custody
- > Transportation
- Different samples, different requirements
- > Receipt at laboratory
- Verification of Chain of Custody
- > Sample Analysis
- Extraction/Recovery, preparation, analysis & reporting

Source Testing Project Costs

Depends primarily on number of sources tested, target pollutants, and degree of off-site analytical work and process stream modifications (*e.g.* waste feed spiking) needed.

- Costs can range from \$1,500 for a simple opacity monitoring test to over \$1MM for a large hazardous waste trial burn.
- Typical testing project fees range from \$7,000 to \$30,000.
- Average Alliance test program fee in 2020 was ~ \$12,000.

Source Emission Test Method Categories

- Fortunately, regulatory agencies (e.g. USEPA and CARB) along with industry trade groups (e.g. NCASI) have established detailed, validated source test methods for specific pollutant types.
- These test methods can be divided up into four general categories
 - Volumetric flow rate
 - Isokinetic, multi-point sample collection
 - Single-point, nonisokinetic (constant sample rate)
 - Instrumental realtime, on-site analysis

Specific Methods

PARAMETER	TEST METHOD	PARAMETER	TEST METHOD
Volumetric Flow Rate	EPA Methods 1-4	Dioxin / Furan	EPA Method 23
Oxygen / Carbon Dioxide	EPA Methods 3, 3A & 3B	Total Hydrocarbons	EPA Methods 25, 25A-E
Particulate Matter	EPA Methods 5, 5A-5I	Hydrogen Halides & Halogens	EPA Methods 26 & 26A
Sulfur Dioxide	EPA Methods 6 & 6C	Metals	EPA Method 29
Nitrogen Oxides	EPA Method 7E	Total Vapor Phase Mercury	EPA Methods 30A & 30B
Sulfuric Acid Mist	EPA Method 8, 8A & CTM- 013	Mercury	EPA Methods 101 & 101A
Visible Emissions	EPA Methods 9 & 22	Mercury-Hydrogen Streams	EPA Method 102
Carbon Monoxide	EPA Methods 10, 10A & 10B	Beryllium	EPA Methods 103 & 104
Hydrogen Sulfide	EPA Method 11	Vinyl Chloride	EPA Method 106
Lead	EPA Method 12	Arsenic	EPA Method 108
Total Fluoride	EPA Methods 13A, 13B, 14 & 14A	PM2.5/PM10	EPA Method 201A
Reduced Sulfur Compounds	EPA Methods 15 & 15A	Condensable Particulate Matter	EPA Method 202
Total Reduced Sulfur	EPA Methods 16, 16A, 16B & 16C	Total Enclosures (PTE / TTE)	EPA Methods 204, 204A-F
In-Stack Particulate Matter	EPA Method 17	Total Chromium	EPA Method 306
Volatile Organic Compounds	EPA Method 18	Methanol	EPA Method 308
Emission Rates (F-Factor)	EPA Method 19	Formaldehyde	EPA Method 316, 320 & 323
NOX - Gas Turbines	EPA Method 20	Hydrochloric Acid	EPA Method 321
VOC Leaks	EPA Method 21	FTIR (Organics / Inorganics)	EPA Methods 318, 320 & 321

1 - Volumetric Flow Rate Test Methods

- Measuring the volumetric flow rate of a gas stream is included in most source testing programs.
- It is used to relate pollutant concentrations to mass emissions rates (lb/hr)
- The following test equipment are used to evaluate flow velocity
 - S-type or Standard pitot tubes (USEPA Methods 1 and 2)
 - Hot wire anemometers
 - Vane anemometers
 - Ultrasonic flow meters
 - Orifice meters
 - Flow measurement head is traversed across duct to account for velocity stratification

S-Type Pitot Tube Schematic

Pitot Tube Tip

Pitot Tip Alignment

Exhaust Stream Flow Profile Evaluation

- Important that the flow profile at the test location be a laminar as possible for volumetric flow rate measurements and isokinetic sampling
- USEPA Method 1 criteria states the average yaw angle must be less than 20 Deg. from vertical or flow is considered "Cyclonic" and site is not acceptable
- 3D flow measurement probes must be used for flow profile testing if test location does not meet USEPA Method 1 location criteria
- Traditional isokinetic testing cannot be conducted in cyclonic gas streams
- In certain circumstances the sample nozzle can be rotated to the flow angles at the various traverse points
- > Flow straighteners are commonly used to reduce cyclonic flow conditions

Exhaust Stream Flow Profile Evaluation, Con't

Pitot Tube Velocity and Flow Rate Equations

- Stack Gas Velocity (ft/sec) = K x pitot tube coefficient x $(\Delta P)^{1/2}$ x $(T_s/P_s \times M_s)^{1/2}$
- > Stack gas Molecular Weight = $0.44 \times (\%CO_2) + 0.32 \times (\%O_2) + 0.28 \times (\%N_2 + \%CO)$
- Stack Gas Flow Rate (dscf/min) = 3600 x (1-Bws) x Vs x Stack Area x (T_{STD} x Ps/Ts x P_{STD})

Where:

 ΔP = pitot tube differential pressure (in H₂O)

K= Conversion constant

 T_s = Stack Temperature (Deg. R)

P_s = Stack Pressure = (In Hg)

M_s = Stack gas molecular weight

B_{ws} = Stack gas moisture content (percent by vol.)

T _{STD} = Standard temperature (460 Deg. R)

P_{STD} = Standard pressure (29.92 in Hg)

Minimum number of traverse points for velocity traverses

USEPA Method 1: Figure 1-1

Minimum number of traverse points for particulate traverses

USEPA Method 1: Figure 1-3

Circular stack cross section divided into 12 equal areas

Rectangular stack cross section divided into 12 equal areas

- Isokinetic methods are used to sample for pollutants in a solid or aerosol state at stack temperature. These methods maintain a sample rate that is equal to the velocity of the sample stream.
 - Particulate or particle-bound pollutant captured on filter media
 - The "same velocity" sample rate is important so that the collected sample is not biased due to varying particle sizes.
 - Sample nozzle diameter and sample rate are selected to achieve an isokinetic sampling condition given specific stack gas conditions
 - This sample velocity/rate is maintained through-out the test run regardless of charges to stack flow rate
 - Sample velocity/rate criteria for the majority of isokinetic methods is 90-110% stack flow rate

Isokinetic Test Methods, con't

- Sample nozzle is traversed across duct to account for particle stratification
- Commonly used Isokinetic test methods:
 - USEPA Reference Method 5 (particulates)
 - USEPA Reference Method 23 (PCDD/DF)
 - USEPA Reference Method 29 (metals)
 - USEPA Reference Method 201A (PM-2.5 and PM-10)
 - CARB Method 429 (PAH)
 - SW846 Method 0050 (HCI/Cl₂)
- USEPA Methods 1-4 which measure stack gas flow rate are conducted in conjunction with above methods

Isokinetic Test Methods, con't

- % Isokinetic Sample Rate = $\underline{100 \times T_s} \times [(V_m \times Vol_c)/T_m \times (P_{bar} + \Delta H/13.6)]$ 60 x P_s x A_n x V_s
- Sample Volume (dscm) = V_m x Meter Gamma (Y) x T_s x (P_{bar} + $\Delta H/13.6$) T_m x P_s
- Pollutant Concentration (mg/dscm) = Pollutant Mass (mg)
 V_{m(STD)} (m³)
- Pollutant Emission Rate (lb/hr) = Pollutant Conc. (mg/dscm) x volumetric flow rate (dscm/min) x 60 x K

Particulate Matter 101

- Types of Particulate Matter
 - Filterable PM (FPM)
 - Filterable PM₁₀ (FPM₁₀)
 - Filterable PM_{2.5} (FPM_{2.5})
 - Condensable PM (CPM)
 - PM₁₀ (FPM₁₀ plus FPM_{2.5} plus CPM)
 - $PM_{2.5}$ (FPM_{2.5} plus CPM)

- Particulate Matter is defined by Method
 - Filterable PM Filtration Temperature
 - In-stack
 - 248°F or 320°F
 - Condensable PM Back half Train
 Operating Temperature
 - 65 85°F
 - As close to 85°F as possible

- > EPA RM 5 or 17
 - PM
 - FPM
- > EPA RM 201A
 - FPM₁₀
 - FPM_{2.5}

Isokinetic Sample Train Schematic

USEPA REFERENCE METHOD 5 - PARTICULATE MATTER

Isokinetic Sample Train Schematic

USEPA REFERENCE METHOD 23 - DIOXINS & FURANS

Isokinetic Sampling - 100% Isokinetic

Allowable: 90-110% {100 ±10%}

8 lbs small

4 lbs large

12 lbs total collected

1 ft³ of gas

12 lbs/ft³

Isokinetic Sampling – 50% Sub-isokinetic

4 lbs small

4 lbs large

8 lbs total collected

0.5 ft³ of gas

16 lbs/ft³ (high bias)

Isokinetic Sampling - 150% Super isokinetic

12 lbs small

4 lbs large

16 lbs total

1.5 ft³ of gas

10.67 lbs/ft³ (low bias)

3 - Single Sample Point, Nonisokinetic Test Methods

- Single point nonisokinetic test methods are used to sample pollutants in the gaseous or vapor state where isokinetic particle effects can be discounted.
 - Samples are adsorbed onto a solid sorbent media or absorbed/reacted in a solution
 - Sampling is usually conducted at a single point in the duct or stack as pollutants are assumed to be in gaseous state and not stratified
 - Sample rate varies with pollutant, concentration, collection media type
 - Samples are typically analyzed off-site, however on-site analysis can be conducted depending on complexity of the analysis and need for realtime data.

- Example of single point test methods include:
 - USEPA Reference Method 6 (SO2)
 - USEPA Reference Method 7 (NOx)
 - USEPA Reference Method 18 (VOCs)
 - USEPA Reference Method 26 (HCI/CI₂)
 - USEPA Reference Method 308 (Methanol)
 - SW846 Method 0051 (HCI/Cl₂)
- USEPA Methods 1-4 which measure stack gas flow rate are conducted separately from the above methods

Single Point, Nonisokinetic Sample Train Schematic

USEPA REFERENCE METHOD 18 - VOC by GC

Single Point, Nonisokinetic Sample Train Schematic

USEPA REFERENCE METHOD 26 - HYDROGEN HALIDE AND HALOGENS

4 - Instrumental Test Methods

- On-site instrumentation is used to obtain real-time emissions data
- Sampling is conducted at a single point or multi-point traverse depending on stratification levels.
- Sample is gaseous, so isokinetic particle effects can be discounted.
- Commonly used on-site analytical procedures include:
 - Chemiluminescence (NOx)
 - Pulse Fluorescence (SO2)
 - Nondispersive infrared (CO, CO2)
 - Electrochemical and paramagnetic(O2)
 - Flame ionization (Total organics)
 - Gas chromatography and FTIR (speciated VOCs)

Instrumental Test Methods, con't

- Single point test methods include:
 - USEPA Reference Method 6C (SO2)
 - USEPA Reference Method 7E (NO_x)
 - USEPA Reference Method 10 (CO)
 - USEPA Reference Method 25A (total hydrocarbons)

USEPA Methods 1-4 which measure stack gas flow rate are conducted separately from the above methods

- Proper planning is key to a successful source emission test program
 - Define testing objectives
 - Identify target pollutants
 - Select appropriate methods for the target parameters
 - Identify process conditions to be tested
- Select source testing contractor carefully
 - Ensure contractor has experience in selected methods and source type
 - Don't use cost as primary selection criteria
 - Get references and experience profiles

Key Source Emission Testing Program Elements, Con't

- Establish clear project timeline with field test, result, and deliverable schedule clearly defined
- Test plan is not always required, but it is recommended to document test program objectives, methods, process operating conditions, QA/QC procedures, and report format/content
- Review facility safety requirements and procedures with all program participants
- Conduct pretest if time and budget allows
- If pretesting is not possible, verify historical test data, stack port locations, flow profile – These parameters can change over time!

Key to a successful source emission test: Plan, Plan, and then Plan some more!

Site Safety

- Is there a <u>safe means available to access the test ports</u> (i.e. ladder, stairs, man lift, elevator)?
- Is there a <u>safe location to conduct testing</u> (i.e. platform, scaffolding, man lift)? Does it meet OSHA criteria and is it in good condition?
- Can the area below test location be isolated/secured?
- How high are the handrails? Are handrails cut?
- Any site specific safety issues (heat stress, high noise levels, respiratory concerns)?
- Work area conditions compromised due to plant operations (forklift traffic, overhead cranes)?

- How close is power supply to the mobile laboratory staging location?
- Is 480V power available? 240V power? 120V power?
- Can generators be used as an alternative to plant power?
- Is 120V power available on the stack or in close proximity to the sampling location?

Stack Set-up and Access

- > Is the stack vertical or horizontal?
- Height to test ports from ground?
- Is the stack circular or rectangular?
- Stack diameter (circular) or width/depth (rectangular)?
- Are cyclonic flow conditions anticipated?

Stack Set-up, con't

Test Ports

- Are test ports installed? How many?
- ➤ Are they located 90 degrees apart or in center of equal areas?
- ➤ What are the <u>diameters of the test ports</u>?
- What are the port collar lengths?
- What is the height of the test ports?
- Are monorail supports present? D-rings?

Questions & Discussion

David Ostaszewski, P.E.

Regional Manager
Northeast USA Region
David.Ostaszewski@stacktest.com

2022 Conferences

In-Person

Women's Leadership Roundtable

July 26-28

Denver, CO

Virtual

EHS Operational Excellence

Sustainability IMPACT

Dates TBD

April 5-7

EHS Software.

Innovation &

Technology

Showcase

Ft. Worth, TX

EHS&S Management Forum

Oct 18-21

Ft. Lauderdale, FL

Lots of Opportunities to Learn & Connect

A recording will be available in 3-4 days. You will receive an email once it's posted to our site.

Have a safe & healthy day!